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A SIMPLE APPROACH TO INFERENCE IN COVARIANCE STRUCTURE
MODELING WITH MISSING DATA: BAYESIAN ANALYSIS'

Bengt Muth&
CRESST/University of California, Los Angeles

Introduction

Well-known educational achievement studies such as the National
Assessment of Educational Progress (NAEP)., the National Education
Longitudinal Study (NELS), and the Longitudinal Study of American Youth
(LSAY) often exhibit complex patterns of missing data, both due to design and
involuntarily, for example, due to attrition of students. Muthen, Kaplan, and
Hollis (1987) showed that a wide variety of analyses with missing data can be
performed using existing covariance structure software such as LISREL and
IISCOMP. Muthen et al. (1987) used standard missing data theory (Little &
Rubin, 1987) to solve the problem as a multiple-group analysis with one group
per missing data pattern. This methodology has recently been applied in the
context of multidimensionality of achievement by Muthen, Khoo, and Nelson
Goff (1994) and achievement growth modeling by Muthen (1994).

Due to the method of data collection used in typical educational
achievement studies, however, the mechanic of carrying out these analyses is
rather awkward. For example, in NAEP no student takes all the achievement
test items that are used (BIB spiraling of test forms) resulting in 26 different
subgroups of students. In LSAY, there are ten patterns due to an adaptive
testing design, where the test form a student obtains in one grade depends on
his/her performance the previous grade, but many more patterns arise due to
students missing from one or more of the testing occasions. To analyze data
using existing covariance structure software, each pattern needs to be
considered as a separate group. The more groups there are, the more
complicated the analysis is. These practical difficulties may hinder
widespread adoption of the new techniques because of the extensive control
language that needs to be used.

1 I thank Ginger Nelson Goff for expert assistance.
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Achievement item analyses typically use IRT techniques to estimate
abilities from the item responses. These techniques deal with missing data
well using standard missing data theory. However, IRT software is limited in
its handling of complex modeling such as multifactorial analysis and growth

analysis. In contrast, current covariance structure software for continuous
variables, such as test scores, is flexible in handling the modeling of
multifactorial analysis and growth but is limited in it handling of missing

data. Follov;ing are examples of the limitations of IRT software that can be

avoided by using covariance structure software for continuous variables.

When modeling growth, typical IRT software produces a score for a single

dimension for each time point. These scores are then analyzed using growth

modeling. For example, in LSAY, NAEP math items are used to form a
unidimensional scale across Grades 7 to 12 which can then be modeled.

Growth studies therefore become limited to the study of that single general
dimension even though interesting growth may take place with respect to

other, more specific dimensions. In contrast, using covariance structure
software for continuous variables, several dimensions can be modeled over

time simultaneously.

Even when IRT software produces multiple dimensions, these
dimensions cannot be specified in a flexible way. For example, one cannot
specify a confirmatory factor model as can be done in covariance structure
software. In addition, specialized IRT software used for NAEP produces

scores based on conditioning variables such as gender, ethnicity, etc., limiting
the possibility of using these and related variables as covariates in later
analyses. Public access tapes for NAEP provide plausible values which are
IRT scores deduced from test results as well as from student-related
background information (conditioning variables). While scores on several
dimensions are produced, these dimensions are not the only ones of interest,
and the validity of the scores for studying relationships to variables related to
the conditioning variables is not clear. In contrast, covariance structure
software allows for flexible modeling of the various dimensions, and because
individual scores are not estimated, the problem of using the conditioning
variables in later analyses is avoided.

The use of covariance structure software for continuous variables
requires the creation of item parcels that can be seen as fallible indicators of
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latent variables. Using item parcels, complex modeling such as the analysis
of growth is well defined for continuous variables by using latent variable
covariance structure modeling. The use of such approaches provides a way to
validate findings based on IRT scores and enables the investigator to go beyond
the analyses that are possible with IRT scores. But this is where the problem
comes in: Covariance structure modeling is presently not well suited to
handle missing data in an easy fashion.

This paper investigates methods that avoid using multiple groups to
represent the missing data patterns in covariance structure modeling. The
aim is instead to do a single-group analysis where the only action the analyst
has to take is to indicate missingness in his/her data. The simplification
would be a big step forward for data analysts and may make the difference
between an investigator actually choosing to attempt the analysis or not,
particularly in the context of a complex analysis such as growth modeling.

One possibility for providing such an approach is to base the analysis on
means and covariances that are created while properly taking missing data
into account. Missing data theory exists for getting such sample statistics,
and one can develop appropriate model testing and standard error procedures.
Such a method is not fully efficient, however, in that th' resulting estimates
are not maximum-likelihood (ML). Instead, a new covariance structure
approach developed by Muthen and Arminger (1994) will be utilized. This
approach draws on Bayesian theory and is a full-information estimator as is
ML estimation. The approach promises to be especially useful in small-
sample situations. It is of interest to compare the Muthen-Arminger
approach to that of the maximum-likelihood techniques based on multiple-
group analysis.

In the second section of this paper, the proposed methodology is briefly
described in a nontechnical way. The third section presents tests of the
performance of this approach on simulated data under various forms of
missing data. The last section concludes.

A Bayesian Approach to Missing Data

With continuous observed variables, the covariance structure model
describes the latent variables as predictors of the observed variables, the
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measurements or indicators, using linear regressions. The parameters
consist of the measurement parameters describing these linear regressions
and the structural parameters describing the distribution of the latent
variables. This results in three sets of unknowns for the Bayesian analysis:
the latent variable values, the measurement parameter values, and the
structural parameter values. The chosen analysis approach is Bayesian in
that the posterior distribution for the unknowns given the observed data will be

considered. In this framework, parameters are viewed as random variables
and the posterior distribution describes the likely location and uncertainty of

the parameter values.

Recently, Muthen and Arminger (1994) studied Bayesian estimation in

latent variable regression models. The computations in such analyses are
often very cumbersome. To reduce the computational burden, Muthen and
Arminger (1994) used the Gibbs sampler Markov Chain Monte Carlo
algorithm (see, e.g., Tanner, 1993). This allows the posterior distribution to be

described by a series of random draws from a set of simple conditional
distributions. This paper focuses on the special case of Muthen and Arminger
(1994) where all observed variables are continuous and are seen as indicators

of latent variables as in conventional covariance structure modeling. The

simulation study expands on the simulations of Muthen and Arminger (1994)

which mostly concerned binary response variables and simpler forms of

missing data.

There are three conditional distributions involved in the Gibbs
calculations with continuous indicators. One is the conditional distribution of
the latent variables given the observed variable values (the data), the
measurement parameters, and the structural parameters. The second is the
conditional distribution of the me-hsurement parameters given the latent
variable values, the data, and the structural parameters. The third is the
conditional distribution of the structural parameters given the latent variable

values, the data, and the measurement parameters.

The Gibbs sampler algorithm simply goes through these three steps
repeatedly, drawing random values from each of the conditional distributions

in turn. At the end of a sufficient number of cycles, the marginal posterior
distribution for each of the three types of unknowns is obtained. In particular,

the distribution for each of the model parameters is obtained. The mean, or
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the mode, of the distribution may be taken as the counterpart of a conventional,
frequentist, parameter estimate. The standard error of the distribution may be
taken as the standard error of the parameter estimate.

The first conditional distribution is the one commonly used to estimate
"factor scores." The model assumes that this distribution is multivariate
normal with a certain known mean vector, depending on the data, and
covariance matrix and is therefore easy to sample from. Given values for the
latent variables obtained from this first step, the values for the measurement
parameters of the second step are easy to describe given that they correspond to
regression intercepts and slopes in regressions of observed dependent
variables (the data) on observed predictors (the latent variables). It can be
shown that they have a multivariate normal distribution. The third step can
often be avoided entirely by setting the metric of the latent variables by choosing
unit factor variances, having orthogonal factors, and standardizing the factor
means to zero. The stfuctural parameters of the factor covariance can
otherwise be obtained by random draws from an inverse chi-square
distribution or an inverse Wishart distribution (see Muthen & Arminger,
1994).

When data are missing for a certain observed variable, these missing
values are simply viewed as yet another set of unknowns in the Bayesian
framework. The Gibbs algorithm is extended so that data are generated for
these variables by random draws from another normal conditional
distribution. With the conventional assumption of uncorrelated measurement
errors, the conditional distribution drawn from is a function of the latent
variable values and the measurement parameters.

As in Muthen and Arminger (1994), the Gibbs sampler is here applied by
first going through 500 "burn-in" cycles and then recording the values from the
next 2,000 cycles.

A Monte Carlo Study

A Monte Carlo study was carried out for a covariance structure model
with missing data. A single-factor model with ten continuous indicators was
chosen. The sample size was set at 500. Two cases of missing data were
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studied, randomly missing data and selectively missing data. Data were
generated and analyzed over ten replications.

The first missing data situation corresponds to "missing completely at
random," or MCAR using terminology from the missing data literature (see,
e.g., Little & Rubin, 1987). Here, data are missing randomly for the last five
observed variables. The second situation corresponds to "missing at random,"
or MAR. The MAR term implies that estimation which ignores the missing
data mechanism is correct even if data are missing selectively. This holds as
long as the missingness depends on observed variables in the model for which

no data are missing. In this case, data are missing on the last five observed
variables if the first observed variable has a value less than zero. This type of

selective missingness is common in, for example, longitudinal studies where
attrition at later time points is a function of the values of variables observed at

earlier time points. It is interesting to note that this selective missingness
does not invalidate the estimation of the parameters. In both the MCAR and

MAR case, data are missing for half of the sample.

The measurement parameter values chosen for the intercepts (nu) and
slopes (lambda) are given in Table 1 (the MCAR case) and Table 2 (the MAR

case). The factor variance is two and the factor mean is zero. The
measurement error variances are all one. The reliability for each observed

variable is therefore 0.5. The "Probn" column gives tests of univariate
normality for each marginal posterior distribution. The "Lw" and "Up"
columns give lower and upper limits for the counterpart to conventional 90%

confidence intervals for each parameter, while the column "Cover" gives the
proportion of the ten replications for which the intervals cover the true value
(these should be 0.9).

The MCAR. case of Table 1 shows that the Bayesian approach works very

well despite the fact that data are missing for half of the variables for half of

the sample. The posterior parameter distributions appear close to normal and

the parameter estimates (e.g., taken at the mean) show no bias. The posterior
variation (measured by "Std") is only slightly increased for variables 6-10 as

compared to variables 1-5.

The MAR case of Table 2 shows that the Bayesian approach also works

very well with data that are missing .selectively. There is still no parameter
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Table 1

Averages of 10 Monte Carlo Replications From Bayesian Analysis Using the Gibbs Sampler
(Sample size = 500; Model: p=10 cont. vars., m=1, q=0; Gibbs: N=2000, burn-in=500; Missing
data for first 250 obs. for Y6 to Y10)

PARA

Method Gibbs Sampler

True Mean Median Std Probn Lw Up Cover

NU1 0.000 0.037 0.037 0.064 0.362 -0.068 0.142 0.700

NU2 0.000 0.035 0.035 0.063 0.559 -0.069 0.140 0.800

NU3 0.000 0.038 0.037 0.064 0.317 -0.067 0.143 0.900

NU4 0.000 0.018 0.018 0.063 0.632 -0.085 0.122 0.900

NU5 0.000 0.043 0.043 0.062 0.564 -0.060 0.146 0.800

NU6 0.000 0.001 0.000 0.081 0.278 -0.130 0.135 0.800

NU7 0.000 0.013 0.012 0.079 0.452 -0.117 0.143 1.000

NU8 0.000 0.051 0.051 0.081 0.480 -0.082 0.184 0.900

NU9 0.000 0.018 0.020 0.082 0.445 -0.117 0.151 0.800

NU10 0.000 -0.005 -C.005 0.080 0.268 -0.138 0.126 0.900

MEAN 0.000 0.025 0.025 0.072 0.436 -0.093 0.143 0.850

LA1 0.700 0.714 0.713 0.043 0.475 0.645 0.784 1.000

LA2 0.700 0.719 0.718 0.042 0.385 0.651 0.790 1.000

LA3 0.700 0.711 0.711 0.042 0.418 0.643 0.781 1.000

LA4 0.700 0.706 0.705 0.042 0.275 0.638 0.777 0.900

LA5 0.700 0.712 0.712 0.042 0.462 0.645 0.781 1.000

LA6 0.700 0.746 0.745 0.056 0.236 0.656 0.839 0.900

LA7 0.700 0.726 0.725 0.054 0.393 0.638 0.817 0.700

LA8 0.700 0.729 0.729 0.055 0.380 0.640 0.821 0.800

LA9 0.700 0.712 0.712 0.055 0.456 0.621 0.803 0.900

LA10 0.700 0.735 0.734 0.055 0.293 0.646 0.826 0.700

MEAN 0.700 0.721 0.720 0.049 0.377 0.642 0.802 0.890

bias. The parameter variation is now slightly higher for the parameters
associated with variables with missing data (6-10), but the increase is not
dramatic. The coverage is about as good in the MAR case as in the MCAR
case.
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Table 2

Averages of 10 Monte Carlo Replications From Bayesian Analysis Using the Gibbs Sampler
(Sample size = 500; Model: p=10 cont. vars., m=1, q=0; Gibbs: N=2000, burn-in=500; Missing
data for Y6 to Y10 if Y1 less than or equal to zero)

PARA

Method Gibbs Sampler

True Mean Median Std Probn Lw Up Cover

NUI 0.000 -0.013 -0.013 0.062 0.484 -0.114 0.089 1.000

NU2 0.000 0.012 0.013 0.062 0.331 -0.089 0.114 1.000

NU3 0.000 0.026 0.026 0.063 0.374 -0.078 0.130 1.000

NU4 0.000 0.010 0.010 0.062 0.657 -0.093 0.111 0.960

NU5 0.000 0.027 0.027 0.062 0.428 -0.075 0.130 0.800

NU6 0.000 -0.035 -0.033 0.095 0.348 -0.196 0.120 1.000

NU7 0.000 0.022 0.024 0.094 0.195 -0.137 0.174 0.700

NU8 0.000 0.005 0.006 0.092 0.182 -0.149 0.152 1.000

NU9 0.000 -0.015 -0.015 0.094 0.428 -0.169 0.139 0.800

NU10 0.000 -0.006 -0.005 0.095 0.127 -0.162 0.147 0.900

MEAN 0.000 0.003 0.004 0.078 0.355 -0.126 0.131 0.910

LA1 0.700 0.694 0.693 0.042 11524 0.625 0.763 1.000

LA2 0.700 0.684 0.684 0.041 0.350 0.618 0.752 1.000

LA3 0.700 0.691 0.690 0.042 0.579 0.622 0.761 0.900

LA4 0.700 0.701 0.700 0.041 0.388 0.633 0.770 0.900

LA5 0.700 0.710 0.709 0.041 0.428 0.643 0.778 1.000

LA6 0.700 0.744 0.743 0.067 0.247 0.634 0.856 0.800

LA7 0.700 0.697 0.698 0.067 0.188 0.588 0.807 0.800

LA8 0.700 0.693 0.691 0.066 0.301 0.586 0.802 1.000

LA.9 0.700 0.691 0.691 0.067 0.403 0.582 0.804 0.900

LA10 0.700 0.687 0.686 0.067 0.221 0.578 0.799 0.900

MEAN 0.700 0.699 0.699 0.054 0.363 0.611 0.789 0.920
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Conclusions

The Bayesian approach appears very promising for missing data
covariance structure modeling. First of all, it results in good properties for the
parameter estimates. Second, it provides an analysis method that is very easy
to use. The ease comes from the fact that a multiple-group approach is not
necessary, but all the user has to specify is what is customary, namely a
missing value code for observations that are missing. The technique is,
however, not yet available in covariance structure software. Developments are
taking place for remedying this.
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